INTRODUCTION

Only a few scientific studies are known on the aerodynamic properties of an arrow, although they have dominant effects on down-range velocity and also on its drift in wind (Okawa, Komori, Miyazaki, Taguchi, & Sugihara, 2013).

Objectives
The objectives of this project are:

- To design and develop arrowheads for archery.
- To perform testing and analyse the arrow drag force by using high speed camera.

Scopes
- 3 types of arrowhead performance to be compared: Bullet point, 3D shaped point and cone shaped point.
- The arrowhead material is stainless steel.
- 240 fps digital camera used to capture arrow shooting.
- Arrow shaft to be use is carbon shaft of 5.46mm outer diameter and 7mm fiberglass and carbon fiber shaft.
- Plastic fletcher is used.

LITERATURE REVIEW

Arrow
- A good arrows must be able to bend at certain degree as the arrow will not be able to shot if the shaft is too stiff (Leach, 2014).
- The common arrowhead shape are as shown below.

- The common shaft materials are carbon, aluminium, fiberglass and wood (Barton et al., 2011).

Front of Center
- The range of FOC recommended for varies archery are: 11% to 16% for FITA (Olympic style), 6% to 12% for 3-D archery, 10% to 15% for field archery and 10% to 15% for hunting (Ashby, 2005).

\[FOC = \frac{\text{arrow balance point}}{\text{total arrow length}} \times 50 \times 100 \]

Arrow Performance Measurement
- Arrow performance can be evaluated by measuring the arrow drag as instable arrow flight will increase the arrow drag (Barton et al., 2012).
- High speed video recording is one of the most common tools and need to be captured directly side-on of the travelling object and the frame rate of the video need to be known.

Drag Force
- According to Miyazaki et al. (2013) in their experiment, two high speed camera was placed 45m apart and velocity decay rate is used to determine the drag coefficient.

METHODOLOGY

Experiment Set up
- A distance of 2.5m, 45.5m, 2m for Camera 1, Camera 2.
- Distance of 7m for concepts selection.

Concept Selection
- 3D point, 5.46mm carbon shaft
- 7mm fiberglass shaft
- Cone shaped head
- Bullet shaped head
- Using high speed camera.

Table 1

<table>
<thead>
<tr>
<th>Point</th>
<th>Averaged Drag Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D shaped</td>
<td>0.1176</td>
</tr>
<tr>
<td>Bullet shaped</td>
<td>0.1139</td>
</tr>
<tr>
<td>Cone shaped</td>
<td>0.1088</td>
</tr>
</tbody>
</table>